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I. INTRODUCTION

Modeling the ignition and early combustion of a solid propellant
granular bed has typically assumed that, once ignited, the regression
rate depends only on the instantaneous gas pressure (usually r=aP").
For lumped parameter gun codes, like Baer-Franklel, it has been the
practice to adjust the two parameters (a, n) in the burning rate ex-
pression to induce an agreement between measured gun pressures and
computed pressures, Such an adjustment process permits the burning
rate to compensate to some degree for other errors in input data. Al-
though the adjustments do permit parametric studies of gun performance,
the disagreement with independent burning rate measurements prohibit
the usefulness of the burning rate formula for any other gun.

g

Within the past five years, there have been several one-dimensional
models of the flame spreading and combustion of the granular propellant
bed. All these models use the same power law burning rate formulation
as the lumped parameter models (r=aPm). Until recently no serious con-

B sideration has been given to using other laws for burning rates pro-
bably because either no definitive solutions are available for the
burning rate and/or the approximate models require too much additional
computing. To date there have not even been approximations used to
find a model's sensitivity to potential transient burning effects.

T —

Considerable work has been directed to transient combustion of
solid propellants in rocket motors. Emphasis has been on linear or
nearly linear perturbations in chamber pressure oscillation or in ex-
tinguishment by depressurization. Kooker and Zinn? did a numerical in-
vestigation of the transient burning coupled to a solid rocket motor
chamber by a nonlinear method and predicted some sharp burning rate
transients with only small amplitude pressure oscillations. Recent
work by Caveny et al13 attempted to model transient burning in gun con-
ditions by using an approach due to Zeldovich for transient heat feed-
back to the propellant surface. Nonlinear models of the combustion

Eip, G. Baer and J. M. Frankle, "The Simulation of Interior Ballistic

Performance of Guns by Digital Computer Program", BRL Report No.
1183, December 1962 (AD #299980).

» " D. E. Kooker and B. T. Zimn, "Numerical Investigation of Non-Linear
Axial Instabilities in Solid Rocket Motors', BRL Contract Report No.
141, March 1974 (AD #776954).

L. H. Caveny, M. Summerfield, and C. W. Nelson, "Ignition Transients
and Pressurization in Closed Chambers", 11th JANNAF Combustion Meeting,
Pasadena, CA, CPIA Pub., 261, September 1974.
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were developed by Krier et 314 and by Levine and Culicks. When Kooker

and Nelson6 compared the predictions of the KTSS, Levine, and Kooker
models in a typical gun pressure environment, they predicted that three
models had the same qualitative response of a single sharp transient at
a low pressure and an asymptotic approach to the power law represen-
tation as pressure increased.

It is the purpose of this brief report to compare the burning
rate predictions of three different types of models for an imposed
pressure history found in a typical Army gun.

II. MODELS

%% Dependence Models

Early approximations for the dgnamic response were proposed by
Paul et al7, Parker and Summerfield8 and vonElbe9. With some simplified
analyses these researchers all arrived at a form for instantaneous
burning rate:

% na dp
r = ro[l + w—ZE dt]'
o

1 Krier, J. S. Tien, W. A. Sirignano, and M. Summerfield, "Nonsteady

Burning Phenomena of Solid Propellants: Theory and Experiments" AIAAJ
Vol. 86, No. 2, pp 278-285, February 1968.

J. N. Levine and F. E. C. Culick, "Nonlinear Analysis of Solid Rocket
Combustion Instability", AFRPL TR-74-45, October 1974.

D. E. Kooker and C. W. Nelson, "Numerical Solution of Three Solid
Propellant Combustion Models During a Gun Pressure Transient'', 12th
JANNAF Combustion Meeting, Newport, RI, August 1976.

B. E. Paul, R. L. Levine, and L. Y. Fong, "A Ballistic Explanation of
the Ignition Pressure Peak", AIAA Solid Propellant Rocket Conference,
Palo Alto, CA, AIAA Paper 64-121,

K, Parker and M. Summerfield, "The Ignition Transient im Solid Pro-
pellant Rocket Motors", Princeton University, Dpt. AMS Report 769,
1966.

G. vonElbe, "Solid Propellant Ignition and Response of Combustion to
Pressure Transients, AIAA Paper 66-668, 1966,
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where r steady state burning rate
o
v a constant coefficient
a thermal diffusivity
n burning rate exponent
P instantaneous pressure
%% time derivative of pressure.

Krierl0 briefly reviewed the derivations and their limitations to small
changes from steady state operation. The coefficient y is different
for each derivation (1/2 for Parker and Summerfield; 1 for Paul et al;
2 for vonElbe). Krier then relaxed the assumption of constant surface
temperature and used the KTSS model of dynamic heat feedback to derive
a variable expression for y:

(p/po)"/ ks
1 -
v = " :
[(p/p )™ ™(2+1/n)-20)

where P reference pressure
m a constant
H a non-dimensional surface heat release.

Quasl Steady Heat Feedback One Dimensional (QSHOD)

Three models solve the partial differential energy equation in the
solid propellant using a nonlinear boundary condition at the propellant
surface., Kooker and Nelson rederived the governing equations in a com-
mon coordinate system and compared the solutions for the pressure field
in a 105mm tank gun as is the purpose of this report. The models all
use a surface boundary condition of the form

do

E]

lR + GZ/R ’

where %% non dimensional thermal gradient
R non dimensional regression rate,

but differ in the form of the functions G1 and G2 and R. Table I gives
the differences,

il Krier, "Solid Propellant Burming Rate During a Pressure Transient',

Comb Sei Tech Vol 5, pp 69-73, 1972.

11
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Table I. Heat Feedback Terms
Model Gl G2 R
KTSS H n nim gy es“'
C £ W A(0_-1)
Kooker/Zinn |H+(0 -1)(1- =B) | @ —=)p exp| 1
s C (e L A
s s “so 1+§(O -1)
S
£ L A(0,-1)
Levine/Culick| B+(0_-1) (1~ ER) P {[E_p, SO S0y Hepp—a——]
s s 1-—=1nP 1+=(0 _-1)
E E''s
+(1-H) }

where © non dimensional temperature
¢ heat capacity

Tso reference surface temperature

A,E non dimensional kinetic constants.

The GiR term represents heat from the exothermic surface reaction and
GoR represents heat from the flame. Kooker and Nelson found that the
Kooker/Zinn and Levine/Culick models gave practically the same response
and that the KTSS model predicted higher overshoots because of the pre-

c
sence of the (es-l)(l- ER) term in the surface heat release term.

s

Zeldovich Model

Caveny et al used the Zeldovich approach to derive a nonsteady
heat feedback of the form

dT R R
axl a['l‘s-ln(i(:)/cp+T°] ’

where cp temperature sensitivity.

12
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The advantage gained is that no model of the flame need be specified.
The non-steady heat feedback from the flame at R(TO,P) 1s assumed to
be the same as the feedback at Ro(Roeq,P) when T, o, 18 the initial
temperature which would yield steady burning at R?g . With that
boundary condition,the thermal energy equation of the solid propellant
is solved numerically.

T

The Test Case

A reference set of thermal and thermodynamic properties were
assigned to a double base propellant. Best estimates from whatever
experimental data were available were used. The only parameter which
is observed to have a dramatic effect on the results is the value of
the surface heat release in the QSHOD model group. Experimental data
from Kubota et alll establish that the value can range easily from 70
to 100 cal/gm which corresponds to values of the parameter H from 0.58
to 0.83.

g 58 Aot

s

i Temperature sensitivity for the propellant was measured as .0046/°K.

ia To be consistent with the other parameters including H, a rough estimate

T of the temperature sensitivity may be obtained from Summerfield et a112

‘ as 0.0054/°K. One source of the difference is the derivation's assump-~

. tion that the KTSS flame contribution to the heat feedback is independent

f of initial temperature. The difference carries no immediate impact be-
cause the results are essentially alike for either value.

The imposed pressure profile was that of the 105mm tank gun
starting at 6.9 MPa where the propellant is assumed to be burning at
steady state.

ITI. RESULTS AND DISCUSSION

T e

The shapes of the burning rate response of the three types of
models are distinctly different. Figure 1 plots the relative burning
rate against time in a pressure field which rises almost linearly at
an average rate of about 109 MPa/sec. For the models using surface
heat release, it was assumed to be 96 cal/gm.

5 N. Kubota, T. J. Ohlemiller, L. H. Caveny, and M. Summerfield, "An

Experimental Study of the Site and Mode of Action of Platonizers
in Double Base Propellants', AIAA Paper 74-124, January 1974.

M, Swmmerfield, L. H. Caveny, R. A. Battista, N. Kubota, Yu A.
Gostinsev, and H. Isoda, "Theory of Dynamic Extinguiehment of Solid
Propellants with Special Reference to Nonsteady Heat Feedback Law',
Journal of Spacecraft Rockets, 8 (3), March 1971, pp 251-258.
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Two values of Yy in the dp/dt model showed different results, al-
though the same general shape. The Krier version reached a peak of
12.4 when the vonElbe version reached 17.4. The vonElbe curve was con-
sistently higher than the Krier curve throughout the time examined.

For the Krier version, the coefficient was initially about 1.5 and
declined steadily to 0.7 at 0.5ms.

The QSHOD models all had the same shape which produced a sharp
peak at 0.25ms. Peaks for the Levine/Culick and Kooker/Zinn were about
the same at 6.1 but the KTSS peak was much higher at about 17 (not shown
in Figure 1). Kooker and Nelson provide a more complete comparison for
this type model.

For the Zeldovich model a much lower response was observed. The
peak overshoot of only 2.1 occurred at 0.4ms.

In the computations, burning rate excursions did not affect the
imposed pressure. In an actual chamber the two would be coupled be-
cause the faster gas generation rate would increase the pressurization
rate. The mass of gas in the chamber is proportional to the integral
fgrdt. To the extent that this integral exceeds the quasi-steady inte-
gral forodt, the chamber pressurization will be altered by the burning
rate excursions. A rough estimate of the effect is given in Table II
where the ratio frdt/frodt is compared at different times. Translating
the ratios into real chamber effects would require a coupling to the
chamber dynamics.

Experimental verification of the magnitude of such burning rate
excursion has not been made. Closed vessel tests of granular beds
typically discard the low pressure information because of uncertainties
in surface area and ignition spreading. Sharp spikes have been
only occasionally reported and usually ignored as a test anomally.

An inference to be drawn is either the spikes do not occur or the time
for flame spreading is of the same order as the time for the burning
rate excursion. Resolution awaits better experimental information.

Table IL. Gas Production Ratios

0, 1ms 0.25ms 0.5ms 0.8ms
dp/dt ¢y = 2 13.1 7.10 3.91 2.47
dp/dt v = £(p) 9.0 4,75 2.64 1.79
Levine/Culick 0.97 2,16 1.81 1.52
Zeldovich 0.97 1vZL 1.43 1.40

A serious criticism may be leveled at applying the QSHOD models
to nitrocellulose based gun propellants. The derivation of the flame

15
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contribution to the heat feedback assumes a uniform distribution of

the energy release in the flame on the basis that composite propellant
flames are diffusion controlled. Because nitrocellulose based propellants
are avidly believed to have premixed, kinetically controlled, thin

flames, the models must be reexamined to judge the effect of changing

the flame structure. A quick calculation for a flame sheet approximation
showed the overshoots to be more like the Zeldovich results. The true
energy release distribution lies probably somewhere in between the two
extremes with a reasonable conclusion that no clear case can be made

for choosing between the Zeldovich and QSHOD models for a nitrocellulose

based propellant.

The implications of this study are not limited to the particular
problem chosen. The gun pressure profile selected, monotonic and
nearly linear, is not strictly limited to guns. Two real cases can be
conceived where the results are applicable: A gun with a composite
propellant, like a nitramine base, or any other vessel like a rocket,
with a composite propellant in a rapid pressurization. The message is
clear: do not choose a model on the basis that they all give the same

answer.

16
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